Conceptual Knowledge Discovery and Data Analysis
نویسندگان
چکیده
In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin.
منابع مشابه
Conceptual Knowledge Discovery - A Human-Centered Approach
In this paper we discuss Conceptual Knowledge Discovery in Databases (CKDD) as it is developing in the field of Conceptual Knowledge Processing. Conceptual Knowledge Processing is based on the mathematical theory of Formal Concept Analysis which has become a successful theory for data analysis during the last two decades. CKDD aims to support a human-centered process of discovering knowledge fr...
متن کاملConceptual Knowledge Discovery in DatabasesUsing Formal Concept Analysis
In this paper we discuss Conceptual Knowledge Discovery in Databases (CKDD) as it is developing in the eld of Conceptual Knowledge Processing (cf. 29],,30]). Conceptual Knowledge Processing is based on the mathematical theory of Formal Concept Analysis which has become a successful theory for data analysis during the last 18 years. This approach relies on the pragmatic philosophy of Ch.S. Peirc...
متن کاملKnowledge Discovery from Texts with Conceptual Graphs and FCA
Building conceptual lattices from conceptual graphs looks as natural way in Formal Concept Analysis but still is not discovered at length. If conceptual graphs are acquired from natural language texts then they contain specific material for knowledge discovery. Conceptual graphs serve as semantic models of text sentences and the data source for concept lattice. With the use of concept lattice i...
متن کاملDesigning an Ontology for Knowledge Discovery in Iran’s Vaccine
Ontology is a requirement engineering product and the key to knowledge discovery. It includes the terminology to describe a set of facts, assumptions, and relations with which the detailed meanings of vocabularies among communities can be determined. This is a qualitative content analysis research. This study has made use of ontology for the first time to discover the knowledge of vaccine in Ir...
متن کاملConceptual Knowledge Discovery with Frequent Concept Lattices
Knowledge discovery support environments include beside classical data analysis tools also data mining tools. For supporting both kinds of tools, a uniied knowledge representation is needed. We show that concept lattices which are used as knowledge representation in Conceptual Information Systems can also be used for structuring the results of mining association rules. Vice versa, we use ideas ...
متن کاملKnowledge representation and processing with formal concept analysis
During the last three decades, formal concept analysis (FCA) became a well-known formalism in data analysis and knowledge discovery because of its usefulness in important domains of knowledge discovery in databases (KDD) such as ontology engineering, association rule mining, machine learning, as well as relation to other established theories for representing knowledge processing, like descripti...
متن کامل